Tuesday, March 20, 2018

SELF-DRIVING SHIPS WILL SOON RAISE THE STAKES AT SEA MARCH 20, 2018 GUEST AUTHOR LEAVE A COMMENT The following article originally appeared on the Kennedy School Review and is republished with permission. Read it in its original form here. By Cameron Lindsay. Center for International Maritime Security


The following article originally appeared on the Kennedy School Review and is republished with permission. Read it in its original form here.
By Cameron Lindsay
While Amazon continues to pilot its fully autonomous drone delivery system, Amazon PrimeAir, an autonomous delivery system millions of times larger is occurring at sea. And whether you are the passenger on-board a cruise ship or you hire a shipping company to transport your belongings overseas, in a few years, you will increasingly be at the mercy of a self-driving ship.
The prevalence of self-driving ships, or in more technical terms, autonomous surfaced vessels (ASV) or unmanned surfaced vessels (USV), which operate either remotely or completely independent of humans, is growing. And while for centuries mariners have sailed in awe of the ocean’s size and reverence of its might, the emergence of the self-driving ship ushers a new era of commercial economic opportunity as well as maritime security risks of miscalculation.
Similar to self-driving cars, most of the technology necessary for the development of a self-driving ship is mature and available at reasonably low cost. Using state-of-the-art computer algorithms within advanced radar, navigation, acoustic, and optical sensor payloads, self-driving ships are expected to operate more efficiently and safely than those operated by humans.
Self-driving ships present the opportunity for the commercial maritime industry to significantly increase profits through the reduction of costs associated with crew salaries, nourishment, fatigue, insurance, and decision bias. As described by the President of Rolls-Royce Marine Mikael Mäkinen, “autonomous shipping is the future of the maritime industry. As disruptive as the smartphone, the smart ship will revolutionize the landscape of ship design and operations. While Rolls-Royce is vying to build the first autonomous smart ship with Google, other companies like the Norwegian company Yara seek to be the world’s first remote controlled and then totally autonomous electric cargo ship in 2020.
However due to the technical complexity, lack of legal precedent, and political hedging associated with self-driving ships, one can expect the wave that brings higher commercial profits to also lower the propensity for international consensus on their use. Self-driving ships present challenges like those faced by federal and state governments today in implementing safeguards when introducing self-driving cars to the public. Yet unlike self-driving cars, these policies will need to address centuries-old maritime legal constructs, sovereignty protections, and universally established rules for how vessels interact on the high seas. The necessity of these policies to accommodate the commercial interests of ships longer than the height of the Empire State Building and communal practices of family owned fishing trawlers will be a significant challenge to policy makers.
Unlike driving your car on a well-regulated interstate highway system, moving further away from a given nation’s coast corresponds with the transition of sovereign territorial waters to an international patch work of treaty obligations under the United Nations (UN) Convention on the Law of the Sea and regulatory organizations, notably led by the International Maritime Organization (IMO). With its UN mandate to promote safe, secure, efficient, and environmentally sustainable shipping, the IMO has an opportunity to advance maritime safety, security, environmental protections, and economic opportunity through its embrace of technological innovation.
While the impact of self-driving ships will be a severe disruption to the commercial maritime industry, the technology will also punctuate a new era of maritime security strategy. Historically, the vast distance of the warship’s Captain from his state served to strengthen professional restraint while simultaneously weakening the temptation of jingoism. Using a command and control structure analogous to cyber and unmanned aerial vehicles (drones), an artificiality to the context of conflict engagement will exist between state authority and state actor. Development efforts underway today have already produced machines that can replicate some of the functions of fighter pilots and sentries, among others, and it appears inevitable that military system capabilities will continue to expand into areas traditionally the domain of human operators.
Nations seeking to capture a maritime strategic advantage may see the application of self-driving ships as a force multiplier to maritime search and rescue, mine clearance, and offensive operations. Conversely some nations may view the application of self-driving ships as their relief valve to unusually high operational demands resulting in accelerated personnel fatigue and vessel deterioration. When coupled with future advances in sustainable energy sources (solar, nuclear, and lithium-ion battery), self-driving ships will become an attractive investment alternative for global powers in extending their ability to project power by sea. Undoubtedly this regional and global great power competition will heighten the risk of miscalculation and unintentional conflict escalation as evident in the December 2016 seizure of an American unmanned oceanographic survey ship by Chinese naval forces.
For international maritime bodies, such as the IMO, International Seabed Authority, and International Whaling Commission, self-driving ships offer a low-cost approach for monitoring and reporting nation-state and private violators of maritime conventions. Through member nation financial support, the UN application of self-driving ships could respond to sustained maritime humanitarian crises while depoliticizing involvement and the risk to entrapment by member nations. This may serve as a pretext for the establishment of a sustainable internationally recognized unmanned maritime peacekeeping mission with the capacity to actively investigate illegal fishing off Somalia’s coast, resource exploitation near Fiji, environmentally damaging practices to the Great Barrier Reef, or freedom of navigation within the disputed South China Sea.
However, before the rewards of self-driving ships can be realized, their challenges must be acknowledged, accepted, and addressed through a combination of active diplomacy, smart policy, and visionary thinking.

Thursday, March 15, 2018

Submarine Cables: UNDERSEA CABLES AND THE CHALLENGES OF PROTECTING SEABED LINES OF COMMUNICATION MARCH 15, 2018 GUEST AUTHOR LEAVE A COMMENT Seabed Warfare Week Center for International Maritime Security By Pete Barker


Center for International Maritime Security
By Pete Barker
For centuries, the sea has enabled trade between nations. Shipping continues to underpin international commerce today. But there is another unseen contribution that the oceans make to the current global order. Deep below the waters, travelling at millions of miles per hour, flickers of light relay incredible quantities of information across the world, powering the exchange of data that forms the internet. From urgent stock market transactions to endless videos of cats, undersea cables support many aspects of twenty first century life that we take for granted. A moment’s thought is sufficient to appreciate the strategic importance of this fact. As a result, any discussion of future seabed warfare would be incomplete without a consideration of the challenges presented by ensuring the security of this vital infrastructure.
Strategists have neglected submarine cables. Whilst topics such as piracy and cyber attacks on ports frequently arise in discussions on maritime threats, cables have not always been as prominent. Some authors have identified the potential risks (such as this 2009 reportfor the UN Environment World Conservation Monitoring Centre), but these works have not always received the attention they deserve.
There are signs that this is changing. A recent report for the Policy Exchange by Rishi Sunak, a member of the UK Parliament, gained significant media coverage. It was not ignored by senior military figures. A few weeks later, the United Kingdom Chief of Defence Staff, Air Chief Marshall Sir Stuart Peach, gave a speech to RUSI, where he said “there is a new risk to our way of life that is the vulnerability of the cables that crisscross the seabed.” The same month, Mark Sedwill, the UK National Security Advisor, gave evidence that “you can achieve the same effect as used to be achieved in, say, World War Two by bombing the London docks or taking out a power station by going after the physical infrastructure of cyberspace in the form of internet undersea cables.”
This is a present threat, not just a hypothetical one. In late 2017, the NATO Submarine Commander Rear Admiral Lennon of the United States Navy revealed “We are now seeing Russian underwater activity in the vicinity of undersea cables that I don’t believe we have ever seen. Russia is clearly taking an interest in NATO and NATO nations’ undersea infrastructure.” The challenge is to maintain this focus and turn a passing spotlight into seriously considered policy.
Understanding Submarine Cables
Vast technical expertise is not necessary to understand why submarine cables are so important. A basic awareness of their construction and use is sufficient. The internet is, at its most basic level, a transfer of information. With the advent of cloud computing, the simple act of storing a file means that data travels from a user on one continent to a server halfway around the world. Although popular imagination sees this happening by satellite relay, in over ninety five percent of cases the physical means for moving this information is a series of light pulses, travelling along a fiber optic cable laid over land and under the sea. These cables are thin silica tubes embedded in a protective cladding, approximately the size of a garden hosepipe. The capacity of these cables to transmit data is ever-increasing. Recent experimental cables have been reported as being capable of transmitting up to one petabyte of data per second. To add some perspective, a petabyte of storage would allow you to store enough music that you could play it continuously for two thousand years.
Submarine cables are mainly private assets. Although expensive (an intercontinental cable is cited as costing between $100 million to $500 million), they are significantly cheaper than the satellite alternatives. In addition to the ownership by telecommunications companies, internet companies, including Facebook and Google, now heavily invest in submarine cables. These cables are laid by specialized ships, capable of carrying up to 2000km of cable, which can be laid at a rate of up to 200km per day. In offshore areas, the cable is laid directly onto the seabed. On the continental shelf, a plough is used to bury the cables and provide some protection from accidental damage, usually caused by anchors.
Attacks on Submarine Cables
These cables are vulnerable to deliberate attack in many ways. The most basic method of attack is simply to break the cable. Their construction means that this task presents little difficulty either mechanically or through the use of small explosive charges. Finding these cables is equally simple. The location of the cables is widely promulgated in order to prevent accidental damage but there is little to stop adversaries from exploiting this information for nefarious ends. Whilst there are a network of repair ships around the world, it is obvious that any service denial cannot be instantly fixed. Multiple attacks, particularly on alternative cable routes, would quickly exacerbate problems and could be organized relatively easily. As the Policy Exchange report highlighted, there is no need to actually proceed to sea to attack the cable network. The landing stations, locations where the submarine cables come ashore, are both well-known and lightly protected. This is a potent combination, particularly when cables are located in fragile states and presents additional challenges when assessing the security of the network.
Cables can also be attacked in non-physical ways. Although shrouded in classification, intelligence analysts have openly stated in national newspapers that the U.S. submarine, USS Jimmy Carter, may have the capability to “tap” undersea cables and obtain the data being transferred without breaching the cable. There are concerns that theRussian Yantar vessels share similar capabilities and these are explored in depth in a recent post by Garrett Hinck. Military planners must understand that defending the submarine cable network might not mean simply preventing physical attack but also ensuring the integrity of the data being transmitted.
Legal Protections
Legally, the status of undersea cables have little protection, particularly when they are outside the jurisdiction of any state and lie on the seabed of the high seas. This is certainly the conclusion of the two major legal studies that have addressed the problem. Professor Heintschel von Heinegg considered submarine cyber infrastructure in a chapter of a NATO Cooperative Cyber Defence Centre of Excellence publication in 2013 and concluded that “the current legal regime has gaps and loopholes and that it no longer adequately protects submarine cables.” Similarly in 2015, Tara Davenport of Yale Law School examined the same topic and stated “the present legal regime is deficient in ensuring the security of cables.” The peacetime protection of submarine cables is a grey area in the law and this provides an additional challenge when assessing how cables should be protected.
The legal status of submarine cables in times of war is equally unclear as observed recently in a post for the Cambridge International Law Journal and another post on Lawfare. There is no authoritative work examining the status of submarine cables in armed conflicts, but even a brief overview is sufficient to highlight the problem. The first question is whether an attack on a submarine cable (outside of a state’s jurisdiction) qualifies as an “armed attack” for the purposes ofarticle 51 of the UN Charter, permitting the use of force by a state in self-defense. The Tallinn Manual on the Law Applicable to Cyber Operations takes the position that the effects of a cyber operation must be analogous to those resulting from a “standard” kinetic armed attack. Simultaneously, it acknowledges that the law is unclear as to when a cyber operation qualifies as an armed attack. Would the consequences of a submarine cable breach be sufficiently serious to raise it to the level of an armed attack? It is difficult to provide a definitive answer but if the answer is ‘no’, then states would not be entitled to use military force to defend submarine cables in the absence of an existing armed conflict. With regard to illicit surveillance of cables, the Tallinn Manual clearly concludes that intelligence gathering from submarine cables would not amount to an armed attack.
The ability of States to target submarine cables during times of war is also open to discussion. Objects may be targeted under international humanitarian law if they make an effective contribution to military action due to their nature, location, purpose, or use and if their total or partial destruction, capture or neutralization offers a definite military advantage. The best example of the extent of military reliance on civilian owned and operated undersea cables is contained in a 2010Belfer Center paper. This records that three of the largest cables between Italy and Egypt were severed in late 2008. As a result, U.S. UAV operations in Iraq were significantly reduced. Submarine cables simultaneously transmit critical military and civilian data. Whilst the presence of the former means that they may be targeted, this is always subject to the principles of proportionality and precautions in attack, designed to minimize the harm to the civilian population. Due to the range of data carried by cables and the number of services that are likely to be affected, these assessments may be very difficult to carry out. An understanding of when cables can be targeted is likely to be highly fact sensitive and it is entirely possible that states will take different views on when this is permissible.
Strategies for the Undersea Cable Problem
Clearly, a protection strategy for undersea cables cannot depend solely on military action. It is impossible to protect the entire cable network given its global expanse. The geographic area requiring protection is simply too large, even for the most powerful of navies. The natural consequence of this conclusion is to focus on identifying and intercepting ships and submarines capable of interfering with the cable network. However, the practicalities of this option are not promising. The technology required to tamper with cables is not overly sophisticated. It can be hosted in a wide range of vessels and easily transferred between them. Submarines present additional challenges in monitoring, tracking and interception, requiring the use of satellites, intelligence, and underwater sensors. For a military commander, the task of protecting seabed submarine cables from attack can seem almost impossible.

Global map of submarine cables [click to expand] (Ben Pollock/Visual Capitalist)
Given this conclusion, national strategies may need to focus on alternative methods of safeguarding the exchange of information. One method would be to increase the level of redundancy within the system by laying additional cables. As cables are expensive and most cables are privately owned, additional routes have to be assured of sufficient funding to make them viable. Somewhat ominously, the International Cable Protection Committee (which represents cable owners) states that “most cable owners feel that there is enough diversity in the international submarine cable network.” This might be true if the only threat is from accidental damage. However, this analysis might change with the realistic prospect of deliberate targeting.
The ideal solution would be the existence of a globally accepted international treaty giving protection to submarine cables by prohibiting interference and clarifying the status and protections of cables. It is a solution advocated by a number of the sources previously cited. Given the shared interests of many, if not all states, in securing the submarine cable network, this may not be unattainable. Regulation of these cables outside the territories of states would not involve any restriction on national territorial sovereignty, increasing the chance of multilateral agreement. Unfortunately this opportunity has not been seized by a distracted international community.
Arguably the most important strategic asset on the seabed is the submarine cable network. They present a unique vulnerability that is challenging to protect and subject to an uncertain legal regime. Any analysis of seabed warfare must concern itself with cable protection. The best way to achieve this is the adoption and acceptance of a treaty regime that acknowledges their importance to the modern world. Until this is achieved, military commanders must factor the exceptional challenges of defending these cables into their plans for seabed warfare.
Lieutenant Commander Peter Barker is a serving Royal Navy officer and barrister. He is currently the Associate Director for the Law of Coalition Warfare at the Stockton Center for the Study of International Law (@StocktonCenter), part of the U.S. Naval War College.  He can be contacted at peter.barker.uk@usnwc.edu.
This post is written in a personal capacity and the views expressed are the author’s own and do not necessarily represent those of the UK Ministry of Defence or the UK government.
Featured Image: The submersible Alvin investigates the Cayman Trough, a transform boundary on the floor of the western Caribbean Sea. (Emory Kristof, National Geographic)

Tuesday, March 13, 2018

Underwater glider

Underwater glider

From Wikipedia, the free encyclopedia
NOAA personnel launch a Slocumglider off Florida
Rutgers Slocum glider RU02 deployed in Sargasso Sea
Dr. Bruce Howe and Bill Felton of the University of Washington prepare a Seaglider for deployment
University of Washington's Seaglider at the surface between dives
An underwater glider is a type of autonomous underwater vehicle (AUV) that uses small changes in its buoyancy in order to move up and down in the ocean like a profiling float. Unlike a float, a glider uses wings to convert that vertical motion to horizontal, propelling itself forward with very low power consumption. While not as fast as conventional AUVs, gliders using buoyancy-based propulsion represent a significant increase in range and duration compared to vehicles propelled by electric motor-driven propellers, extending ocean sampling missions from hours to weeks or months, and to thousands of kilometers of range. Gliders follow an up-and-down, sawtooth-like profile through the water, providing data on temporal and spatial scales unavailable to previous AUVs, and much more costly to sample using traditional shipboard techniques.[1] A wide variety of glider designs are in use by Navy and ocean research organizations and typically cost US$100,000.[2]


The concept of an underwater glider was first explored in the early 1960s with a prototype swimmer delivery vehicle named Concept Whisper.[3] The sawtooth glide pattern, stealth properties and the idea of a buoyancy engine powered by the swimmer-passenger was described by Ewan Fallon in his Hydroglider patent submitted in 1960.[4] In 1992, the University of Tokyoconducted tests on ALBAC, a drop weight glider with no buoyancy control and only one glide cycle.[1] The DARPA SBIR program received a proposal for a temperature gradient glider in 1988. DARPA was aware at that time of similar research projects underway in the USSR.[5] This idea, a glider with a buoyancy engine powered by a heat exchanger, was introduced to the oceanographic community by Henry Stommel in a 1989 article in Oceanography, when he proposed a glider concept called Slocum, developed with research engineer Doug Webb. They named the glider after Joshua Slocum, who made the first solo circumnavigation of the globe by sailboat. They proposed harnessing energy from the thermal gradient between deep ocean water (2-4 °C) and surface water (near atmospheric temperature) to achieve globe-circling range, constrained only by battery power on board for communications, sensors, and navigational computers.[3]
By 2003, not only had a working thermal-powered glider (Slocum Thermal) been demonstrated by Webb Research (founded by Doug Webb), but they and other institutions had introduced battery-powered gliders with impressive duration and efficiency, far exceeding that of traditional survey-class AUVs.[6] These vehicles have been widely deployed in the years since then. The University of Washington SeagliderScripps Institution of Oceanography Spray, and Teledyne Webb Research Slocum vehicles have performed feats such as completing a transatlantic journey[7] and conducting sustained, multi-vehicle collaborative monitoring of oceanographic variables.[1]
In 2011, the first wingless glider, SeaExplorer was released with a large payload capacity, dedicating the first third of the vehicle to interchangeable payloads, in addition to typical CTD sensors. The vehicle achieves 1 knot speeds, is equipped with externally rechargeable Li-Ion batteries and its torpedo shape is able to glide relying on two pairs of small static rear fins for stability.[citation needed]

Functional description[edit]

Gliders typically make measurements such as temperatureconductivity (to calculate salinity), currents, chlorophyll fluorescence, optical backscatter, bottom depth, and (occasionally) acoustic backscatter. They navigate with the help of periodic surface GPS fixes, pressure sensors, tilt sensors, and magnetic compasses. Vehicle pitch is controllable by movable internal ballast (usually battery packs), and steering is accomplished either with a rudder (as in Slocum) or by moving internal ballast to control roll (as in SeaExplorerSpray and Seaglider). Buoyancy is adjusted either by using a piston to flood/evacuate a compartment with seawater (Slocum) or by moving oil in/out of an external bladder (SeaExplorerSeagliderSpray, and Slocum Thermal). Commands and data are relayed between gliders and shore by satellite.[3]
Gliders vary in the pressure they are able to withstand. The Slocum model is rated for 200 meter or 1000 meter depths. Spray can operate to 1500 meters, Seaglider to 1000 meters, SeaExplorer to 700, and Slocum Thermal to 1200. In August 2010, a Deep Glider variant of the Seaglider achieved a repeated 6000-meter operating depth.[1] Similar depths have been reached by a Chinese glider in 2016. [8]

Liberdade class flying wings[edit]

In 2004, the US Navy Office of Naval Research began developing the world's largest gliders, the Liberdade class flying wing gliders, which uses a blended wing bodyhullform to achieve hydrodynamic efficiency. They were initially designed to quietly track diesel electric submarines in littoral waters, remaining on station for up to 6 months. The current model is known as the ZRay and is designed to track and identify marine mammals for extended periods of time.[9] It uses water jets for fine attitude control as well as propulsion on the surface.[9][10]